53 research outputs found

    Prevalence and novelty of PRPF31 mutations in French autosomal dominant rod-cone dystrophy patients and a review of published reports

    Get PDF
    Background: Rod-cone dystrophies are heterogeneous group of inherited retinal disorders both clinically and genetically characterized by photoreceptor degeneration. The mode of inheritance can be autosomal dominant, autosomal recessive or X-linked. The purpose of this study was to identify mutations in one of the genes, PRPF31, in French patients with autosomal dominant RP, to perform genotype-phenotype correlations of those patients, to determine the prevalence of PRPF31 mutations in this cohort and to review previously identified PRPF31 mutations from other cohorts.Methods: Detailed phenotypic characterization was performed including precise family history, best corrected visual acuity using the ETDRS chart, slit lamp examination, kinetic and static perimetry, full field and multifocal ERG, fundus autofluorescence imaging and optic coherence tomography. For genetic diagnosis, genomic DNA of ninety families was isolated by standard methods. The coding exons and flanking intronic regions of PRPF31 were PCR amplified, purified and sequenced in the index patient.Results: We showed for the first time that 6.7% cases of a French adRP cohort have a PRPF31 mutation. We identified in total six mutations, which were all novel and not detected in ethnically matched controls. The mutation spectrum from our cohort comprises frameshift and splice site mutations. Co-segregation analysis in available family members revealed that each index patient and all affected family members showed a heterozygous mutation. In five families incomplete penetrance was observed. Most patients showed classical signs of RP with relatively preserved central vision and visual field.Conclusion: Our studies extended the mutation spectrum of PRPF31 and as previously reported in other populations, it is a major cause of adRP in France

    Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inherited retinal disorders are clinically and genetically heterogeneous with more than 150 gene defects accounting for the diversity of disease phenotypes. So far, mutation detection was mainly performed by APEX technology and direct Sanger sequencing of known genes. However, these methods are time consuming, expensive and unable to provide a result if the patient carries a new gene mutation. In addition, multiplicity of phenotypes associated with the same gene defect may be overlooked.</p> <p>Methods</p> <p>To overcome these challenges, we designed an exon sequencing array to target 254 known and candidate genes using Agilent capture. Subsequently, 20 DNA samples from 17 different families, including four patients with known mutations were sequenced using Illumina Genome Analyzer IIx next-generation-sequencing (NGS) platform. Different filtering approaches were applied to identify the genetic defect. The most likely disease causing variants were analyzed by Sanger sequencing. Co-segregation and sequencing analysis of control samples validated the pathogenicity of the observed variants.</p> <p>Results</p> <p>The phenotype of the patients included retinitis pigmentosa, congenital stationary night blindness, Best disease, early-onset cone dystrophy and Stargardt disease. In three of four control samples with known genotypes NGS detected the expected mutations. Three known and five novel mutations were identified in <it>NR2E3, PRPF3, EYS, PRPF8, CRB1, TRPM1 </it>and <it>CACNA1F</it>. One of the control samples with a known genotype belongs to a family with two clinical phenotypes (Best and CSNB), where a novel mutation was identified for CSNB. In six families the disease associated mutations were not found, indicating that novel gene defects remain to be identified.</p> <p>Conclusions</p> <p>In summary, this unbiased and time-efficient NGS approach allowed mutation detection in 75% of control cases and in 57% of test cases. Furthermore, it has the possibility of associating known gene defects with novel phenotypes and mode of inheritance.</p

    WDR34, a candidate gene for non-syndromic rod-cone dystrophy

    Get PDF
    Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.Doctoral funding from the Ministère de l'Enseignement Supérieur et de la Recherche; Europe exchange 2018 Erasmus; European Reintegration Grant, Grant/Award Number: PERG04-GA-2008-231125; Fondation de France-Berthe Fouassier; Foundation Fighting Blindness, Grant/Award Number: Grant # CD-CL-0808-0466-CHNO CIC503 recogn; Foundation Voir et Entendre; French Agence Nationale de la Recherche, Grant/Award Numbers: IHU FOReSIGHT: ANR-18-IAHU-0001, LIFESENSES: ANR-10-LABX-65; National Eye Institute [R01EY012910 (EAP), R01EY026904 (KMB/EAP) and P30EY014104 (MEEI core support)], the Foundation Fightin

    ℮-conome: an automated tissue counting platform of cone photoreceptors for rodent models of retinitis pigmentosa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retinitis pigmentosa is characterized by the sequential loss of rod and cone photoreceptors. The preservation of cones would prevent blindness due to their essential role in human vision. Rod-derived Cone Viability Factor is a thioredoxin-like protein that is secreted by rods and is involved in cone survival. To validate the activity of Rod-derived Cone Viability Factors (RdCVFs) as therapeutic agents for treating retinitis Pigmentosa, we have developed e-conome, an automated cell counting platform for retinal flat mounts of rodent models of cone degeneration. This automated quantification method allows for faster data analysis thereby accelerating translational research.</p> <p>Methods</p> <p>An inverted fluorescent microscope, motorized and coupled to a CCD camera records images of cones labeled with fluorescent peanut agglutinin lectin on flat-mounted retinas. In an average of 300 fields per retina, nine Z-planes at magnification X40 are acquired after two-stage autofocus individually for each field. The projection of the stack of 9 images is subject to a threshold, filtered to exclude aberrant images based on preset variables. The cones are identified by treating the resulting image using 13 variables empirically determined. The cone density is calculated over the 300 fields.</p> <p>Results</p> <p>The method was validated by comparison to the conventional stereological counting. The decrease in cone density in <it>rd1 </it>mouse was found to be equivalent to the decrease determined by stereological counting. We also studied the spatiotemporal pattern of the degeneration of cones in the <it>rd1 </it>mouse and show that while the reduction in cone density starts in the central part of the retina, cone degeneration progresses at the same speed over the whole retinal surface. We finally show that for mice with an inactivation of the Nucleoredoxin-like genes <it>Nxnl1 </it>or <it>Nxnl2 </it>encoding RdCVFs, the loss of cones is more pronounced in the ventral retina.</p> <p>Conclusion</p> <p>The automated platform ℮-conome used here for retinal disease is a tool that can broadly accelerate translational research for neurodegenerative diseases.</p

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    The development of white matter structural changes during the process of deterioration of the visual field

    No full text
    International audienceEmerging evidence suggests that white matter plasticity in the adult brain is preserved after sensory and behavioral modifications. However, little is known about the progression of structural changes during the process of decline in visual input. Here we studied two groups of patients suffering from advanced retinitis pigmentosa with specific deterioration of the visual field: patients who had lost their peripheral visual field, retaining only central (“tunnel”) vision, and blind patients with complete visual field loss. Testing of these homogeneous groups made it possible to assess the extent to which the white matter is affected by loss of partial visual input and whether partially preserved visual input suffices to sustain stability in tracts beyond the primary visual system. Our results showed gradual changes in diffusivity that are indicative of degenerative processes in the primary visual pathway comprising the optic tract and the optic radiation. Interestingly, changes were also found in tracts of the ventral stream and the corticospinal fasciculus, depicting a gradual reorganisation of these tracts consequentially to the gradual loss of visual field coverage (from intact perception to partial vision to complete blindness). This reorganisation may point to microstructural plasticity underlying adaptive behavior and cross-modal integration after partial visual deprivation

    Short postural training session improves stability in patients with age-related macular degeneration

    No full text
    International audienceObjective: To explore the impact of unilateral versus bilateral age-related macular degeneration (AMD) on postural sway using a wavelet analysis, and to examine the effects of short-term postural training on postural stability in subjects with AMD.Methods: This was a cross-sectional study in which 13 subjects with unilateral AMD, 18 subjects with bilateral AMD, and 16 healthy age-matched controls participated in a short postural training session. Postural performance was measured before and after training using a force platform under seven visual conditions. We analyzed the surface area and mean velocity of the center of pressure (CoP), the postural instability index (PII), and the number of falls and collisions during postural training.Results: Bilateral AMD subjects were more unstable than healthy controls, with increased CoP surface area and PII. Visual acuity affected postural sway. After training, all subjects (both AMD and healthy) had improved postural stability.Conclusion: This study confirmed that AMD subjects are more unstable than healthy olderadults, which is most likely because of their poor visual capabilities. A short training session improved postural performance in older adults (both healthy and subjects with AMD), which suggests that these subjects can use compensatory mechanisms for balance control
    corecore